If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-4x=165
We move all terms to the left:
2x^2-4x-(165)=0
a = 2; b = -4; c = -165;
Δ = b2-4ac
Δ = -42-4·2·(-165)
Δ = 1336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1336}=\sqrt{4*334}=\sqrt{4}*\sqrt{334}=2\sqrt{334}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{334}}{2*2}=\frac{4-2\sqrt{334}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{334}}{2*2}=\frac{4+2\sqrt{334}}{4} $
| -x+5=-(x-5) | | 2a=(4a-6) | | 4x-2(80-x)(0.5×10)=195 | | 4/5+x=19 | | 4(5x+2)-10=2(10x-1) | | 4/x=8.6 | | 4(2x-5)=8x=20 | | 8(2x-1)=16x-8 | | x(2)+13=75 | | 7x+13x=33 | | 2(3x+5)=2x+4 | | (-7x-5)/5=-15 | | 15(t)+4.9*(t^2)=44 | | 3p-5=-1+2p | | 44=15(t)+(1/2*9.8*(t^2)) | | (-7x-5)/5=(-15) | | 4(x-6)=2x/6 | | 44=15(t)+1/2*9.8*(t^2) | | 4x2+25=20 | | 3(8+3m)=4(m+6) | | 2x^2+162= | | 2(x-3)+2=2(2x-4) | | -6-6p=-6(p+1) | | 3w+7/3=19 | | 4.9t^2+15t-44=0 | | x/6=159 | | -3/5m-9=-6 | | 2+2x+32=x+23 | | 22x-55=22x-55 | | 3(4x+7)=-35+20 | | 5(k-2)-6=5k-(4k-1) | | 2x-5(5x+5)=44 |